ΑΛΓΕΒΡΑ  Α΄ ΛΥΚΕΙΟΥ

    Κεφάλαιο   1:      ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

    1.1 Οι πράξεις και οι ιδιότητές τους
    1.2 Δυνάμεις
    1.3 Η Εξίσωση αχ+β=0
    1.4 Διάταξη πραγματικών αριθμών
    1.5 Οι ανισώσεις αχ+β>0 και αχ+β<0
    1.6 Απόλυτη τιμή πραγματικού αριθμού
    1.7 Ρίζες πραγματικών αριθμών

    Κεφάλαιο   2:        ΣΥΝΑΡΤΗΣΕΙΣ

    2.1 Σύνολα
    2.2 Η έννοια της συνάρτησης
    2.3 Γραφική παράσταση συνάρτησης
    2.4 Η συνάρτηση f(x)=αχ+β

    Μία εργασία στην γραμμική συνάρτηση

    2.5 Μελέτη συνάρτησης

    Κεφάλαιο   3:      ΣΥΣΤΗΜΑΤΑ  ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

    3.1 Συστήματα δύο γραμμικών εξισώσεων με δύο αγνώστους
    3.2 Λύση - διερεύνηση συστήματος
    3.3 Συστήματα γραμμικών εξισώσεων με περισσότερους από δύο αγνώστους
    1. επίλυση ενός συστήματος 3x3, με την γραφική μέθοδο

     

    Κεφάλαιο   4:      ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

    4.1 Λύση της εξίσωσης αχ²+βχ+γ=0 , α#0
    4.2 Άθροισμα και γινόμενο ριζών
    4.3 Εξισώσεις και συστήματα που ανάγονται σε λύση εξισώσεων 2ου βαθμού
    4.4 Η συνάρτηση f(χ)=αχ²+βχ+γ , α 0
    Γραφική παράσταση οικογένειας παραβολών, της μορφής:
     
    4.5 Πρόσημο των τιμών της συνάρτησης f(χ)=αχ²+βχ+γ , α#0
    Ένα δυναμικό φύλλο εργασίας δημιουργημένο στο Geogebra
     

    Κεφάλαιο   5:      ΤΡΙΓΩΝΟΜΕΤΡΙΑ

    5.1 Τριγωνομετρικοί αριθμοί
    5.2 Τριγωνομετρικές ταυτότητες
    5.3 Αναγωγή στο 1ο τεταρτημόριο
    Oι αντίθετες γωνίες έχουν τα ίδια συνημίτονα
    Οι παραπληρωματικές γωνίες έχουν τα ίδια ημίτονα

    ΠΑΡΑΡΤΗΜΑ

      Συστήματα γραμμικών ανισώσεων
     


  1. Θεωρία

     
    Διερεύνηση της εξίσωσης α΄ βαθμού
    Απόδειξη της ιδιότ. 3 των απολύτων τιμών:  θ>0, τότε:
    Απόδειξη των ιδιοτ. 1, 2 για την απόλυτη τιμή του αθροίσματος και του γινομένου δύο πραγματικών αριθμών

     
      Aν 

    i)

    ii)

    To σύστημα: 

    v     Αν D   0, έχει μοναδική λύση την ,

    v     Aν D = 0 και είναι αδύνατο.

    v     Αν D=Dx=Dy=0 είναι αόριστο εκτός αν α=α΄=β=β΄=0

    και γ  0  ή  γ΄ 0, οπότε είναι αδύνατο
    Aπόδειξη του τύπου του αθροίσματος και γινομένου των ριζών μιας εξίσωσης δευτέρου βαθμού
    Μορφές τριωνύμου (σελ. 130), συνοπτικό πινακάκι με το πρόσημο των τιμών της συνάρτησης f(x) = αx2 +βx+γ

     

  2. Ασκήσεις-Προβλήματα
    Διερεύνηση συστήματος
    Λύση συστήματος 3 εξισώσεων με 3 αγνώστους
    Eξισώσεις με απόλυτες τιμές
    Άσκηση με ρίζες
    Δευτεροβάθμια εξίσωση-Διερεύνηση
    Άσκηση στο άθροισμα και στο γινόμενο των ριζών
    Πρόσημο των ριζών του τριωνύμου-Λύση ανισώσεων
    Προβλήματα σε συστήματα 
  3. Κάνετε κλικ εδώ, για να  μεταφερθείτε στην ιστοσελίδα, όπου βρίσκεται το αρχείο (σε Word 97 ή νεότερο) που περιέχει τα θέματα της Άλγεβρας Α΄Λυκείου με τις λύσεις τους που δόθηκαν την περίοδο 2001,  στο σχολείο που δίδασκα το μάθημα.  

    Γεωμετρία Α΄ Λυκείου

     Γεωμετρικά προβλήματα  (απλές και σύνθετες γεωμετρικές κατασκευές, γεωμετρικοί τόποι, προβλήματα της καθημερινής ζωής που σχετίζονται με την Γεωμετρία)


    Πίσω στα Μαθηματικά και Πληροφορική